The Crystal Structure of the A-super Form of Lauric Acid

Midori Goto and Eiichi Asada

National Chemical Laboratory for Industry, Hon-cho, Shibuya-ku, Tokyo 151 (Received June 4, 1977)

The crystal structure of the A-super form of lauric acid has been determined. The structural parameters were refined by the block-diagonal least-squares method, and the final R value was 0.094. Two types of molecular conformations of a lauric acid exist in the crystal; one is the ordinary type, as seen in the C-form or the A_1 -form of the lauric acid, while the other is that rotating the carboxyl group about the Cl–C2 bond. This unusual structure was explained by the oxygen-oxygen distance of the adjacent molecule.

Even-numbered fatty acids are known by powder X-ray diffractions to exist in three crystalline forms, named A, B, and C.¹⁾ In the case of lauric acid, the crystal structure of the C-form has been determined by Vand, Morley and Lomer.²⁾ This has an orthorhombic subcell of the hydrocarbon chain. Another crystal form, belonging to A, was studied by von Sydow³⁾ in only one projection. He showed that it has the triclinic subcell of the hydrocarbon chains. He named it the A-super form, because it could be regarded as a sixfold superstructure from the chain packing. Later, another crystal form, A₁, belonging to the A form, has been completely determined by Lomer ⁴⁾

Three-dimensional results are required in order to discuss thoroughly the relations among polymorphic forms. We could obtain a single crystal of the Asuper form of a sufficient size and studied its structure from a three-dimensional approach.

Experimental

Lauric acid was purified according to the procedure described by Tsuchiya.⁵⁾ At first it crystallized in the C-form in an isooctane solution. After it had stood in the solution for about two weeks at room temperature, the C-form was gradually transformed into the A-super form with colorless, triclinic needle-like crystals elongated along the a-axis. The crystal data are listed in Table 1. The intensity data were collected by means of a Rigaku-Denki four-circle diffractometer by using graphite monochromated Cu $K\alpha$ radiation. Reflections with 2θ values up to 60° were collected. The total number of observed reflections was 679.

Structure Determination

The y and z co-ordinates of the atoms were assumed to be those given by von Sydow, and the approximate x co-ordinates were obtained by taking into account three-dimensional Patterson maps and the packing of the molecules.

The hydrogen atoms were placed at the calculated positions assuming the C-H length of 1.10 Å and a tetrahedral arrangement about the carbon atom. The hydrogen atoms of the end were assumed to be at the *gauche* position. The hydrogen atom of the carboxyl group was neglected. Refinements were carried out by the block-diagonal least-squares method

TABLE 1. CRYSTAL DATA

Lauric acid A-super form

Molecular weight 200.3

Melting point $44.0\,^{\circ}\text{C}$ The unit cell was chosen as that of von Sydow.

Triclinic; $A\overline{1}$ Z=12 a=5.415(2)Å b=25.964(11)Å $a=69.82^{\circ}(4)$ b=25.964(11)Å $a=113.14^{\circ}(4)$ a=35.183(13)Å $a=121.15^{\circ}(3)$ $a=3829.9\,\text{Å}^3$ $a=31.04\,\text{g/cm}^3$

using HBLS program (Ashida),⁶⁾ with anisotropic temperature factors for non-hydrogen atoms. The parameters of the hydrogen atoms were not refined. The R value was reduced to 0.094.

The final atomic parameters are listed in Table 2.* The y and z co-ordinates did not differ significantly from those given by von Sydow.³⁾

Results and Discussion

The bond lengths, bond angles, and internal rotation angles are listed in Table 3. The arrangement of the molecules in the crystal is shown in Fig. 1. The chains are packed in a triclinic subcell with dimensions of a=4.33 Å, b=5.42 Å, c=2.52 Å, $\alpha=75.9^{\circ}$, $\beta=108.9^{\circ}$. $\gamma=122.1^{\circ}$. Both carboxyl and methyl end groups appear in the same molecular layer.

An ORTEP (Johnson)⁷⁾ drawing of the three crystallographically independent molecules (I, II, and III) is shown in Fig. 2. The conformation of Molecule (III) is roughly equivalent to that of (II). There are two types of molecular conformations of lauric acid in an asymmetric unit; one type is (I), and the other, (II) and (III).

The carbon atoms in each molecule are nearly coplanar, as is shown in Table 4. The dihedral angle between the plane of the carboxyl group and that of the carbon chain is 83° in Molecule (I), 10° in (II) and 25° in (III) respectively. The plane of the carboxyl group in Molecule (I) is almost perpendicular to the carbon chain, while in (II) and (III) the two planes are roughly parallel, as is found in the A₁ form of lauric acid. The conformation as found in Molecule (I) was also reported in the structure of dl-2-hydroxytetradecanoic acid, s) which has a large substituent near the carboxyl group.

It is rare for two types of molecular conformation

^{*} The table of the observed and calculated structure factors has been submitted and is kept by the Office of the Chemical Society of Japan, 1-5, Kanda-Surugadai, Chiyoda-ku, Tokyo 101 (Document No 7804).

Table 2(a). Atomic co-ordinates ($\times 10^4$) and anisotropic temperature factors ($\times 10^4~{\rm \AA}^2)$ for C and O atoms

The temperature factors are of the form:

 $T\!=\!\exp[\,-\,(B_{11}h^2\!+\!B_{22}k^2\!+\!B_{33}l^2\!+\!2B_{12}hk\!+\!2B_{13}hl\!+\!2B_{23}kl)].$

	x	у	z	$\frac{B_{11}}{B_{11}}$	B_{22}	B_{33}	B ₁₂	B_{13}	B_{23}
C1	3357	-100	483	835	45	3	160	23	11
C2	5870	-247	803	590	37	14	184	-62	-2
C3	6427	28	1213	918	12	13	68	25	-10
C4	9072	-161	1540	913	10	13	121	27	-2
C5	9600	72	1935	63	26	18	1	-35	-9
C6	12036	-120	2289	266	29	10	20	36	-3
G7	12930	118	2699	926	20	4	71	-6	-12
C8	15516	-62	3057	879	12	7	56	7	-6
C 9	16250	207	3463	801	22	16	67	65	5
C10	18566	-10	3801	648	7	18	65	60	-1
C11	19358	257	4202	488	34	16	77	-41	-13
C12	21828	64	4542	1058	50	7	119	-91	-26
C13	1552	1552	459	958	6	26	28	92	9
C14	4129	1402	814	685	31	15	118	15	4
C15	4812	1679	1208	937	39	9	119	8	-4
C16	7252	1462	1554	419	40	13	126	-29	-15
C17	8162	1746	1958	301	15	21	-11	35	2
C18	10510	1560	2293	664	2	8	73	53	7
C19	11195	1776	2696	791	26	9	88	24	3
C20	13702	1609	3058	906	19	12	7 9	16	-2
C 21	14513	1871	3468	570	51	20	170	35	-4
C22	17046	1677	3800	849	32	25	46	85	1
C 23	17552	1878	4196	999	54	21	183	54	4
C24	20195	1689	4548	1194	26	12	71	0	-13
C 25	4368	-1888	507	2069	10	47	165	280	36
C 26	7028	-2022	827	1253	17	22	131	112	4
C 27	7765	-1682	1219	611	25	11	102	-3	-6
C 28	10512	-1850	1559	699	15	10	46	12	-6
C 29	11336	-1608	1958	870	28	12	78	45	0
C30	13751	-1806	2311	276	25	21	70	23	-2
C31	14743	-1510	2708	592	28	21	120	-11	-10
C 32	17094	-1720	3044	823	25	14	86	48	-4
C 33	17994	-1450	3452	334	27	16	42	36	-1
C34	20300	-1730	3806	519	27	18	36	39	-8
C 35	21090	-1405	4197	308	16	22	39	-4	11
C 36	23593	-1583	4540	1175	63	14	206	22	7
O1	3469	-1546	490	522	15	8	32	-55	-10
O2	744	1234	150	1187	26	22	101	13	-19
O3	3818	382	185	684	39	15	116	-24	5
O4	557	-443	467	830	69	13	153	35	0
O5	3530	-2123	174	962	40	11	137	-14	-1
O6	715	1849	445	909	47	10	121	-40	-16

The average standard deviations are as follows:

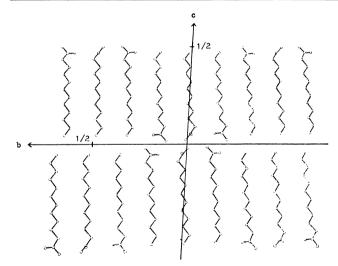

 $sx = 200, \quad sy = 40, \quad sz = 30, \quad sB_{11} = 720, \quad sB_{22} = 40, \quad sB_{33} = 20, \quad sB_{12} = 160, \quad sB_{13} = 90, \quad sB_{23} = 20, \quad (\times 10^4).$

Table 2(b). Atomic co-ordinates ($\times 10^3$) for H atoms The temperature factors are isotropic. $B\!=\!6.0\,{\rm Å}^2$

	x	y	z		x	У	z
H2	788	2	68	H20	1573	183	295
H'2	509	-74	88	H'20	1286	111	314
H3	733	53	113	H21	1252	164	359
H'3	442	-24	133	H'21	1545	237	339
H4	1110	11	143	H22	1907	193	368

Table 2(b). (Continued)

	x	${\boldsymbol{\mathcal{Y}}}$	z		x	y	z
H'4	821	66	161	H'22	1611	117	386
H5	752	-17	203	H23	1553	162	430
H'5	1053	58	187	H'23	1842	238	413
H6	1404	7	218	H24	1942	119	460
H'6	1112	-62	236	H'24	2078	182	485
H7	1094	- 9	281	H''24	2223	193	443
H'7	1378	62	26 3	H26	893	-178	69
H8	1752	16	295	H'26	625	-252	94
H'8	1462	-56	314	H27	582	-192	135
H9	1422	0	357	H'27	864	-119	111
H' 9	1730	71	339	H28	968	-235	164
H10	1753	-51	388	H'28	1244	-162	143
H'10	2060	20	369	H29	934	-180	207
H11	1734	4	431	H'29	1230	-110	188
H'11	2029	76	412	H30	1571	-163	219
H12	2092	-44	461	H'30	1275	-231	239
H'12	2250	23	483	H31	1279	-169	282
H''12	2380	26	443	H'31	1578	-101	262
H14	618	164	70	H32	1905	-154	293
H'14	346	91	91	H'32	1604	-223	312
H15	275	146	131	H33	1600	-162	356
H'15	582	218	113	H'33	1914	-95	338
H16	922	166	143	H34	2234	-151	370
H'16	623	96	163	H'34	1915	-220	389
H17	914	225	188	H35	1910	-162	431
H'17	618	155	208	H'35	2203	-91	411
H18	1255	177	219	H36	2427	-141	482
H'18	957	105	236	H'36	2268	-209	462
H19	916	157	280	H''36	2552	-140	442
H'19	1203	228	262				

1) A perspective view along the $\mathbf{b} \times (\mathbf{b} \times \overline{\mathbf{a}})$ direction drawn by ORTEP.⁷⁾

2) Stereoscopic view along the ${\bf b}\times({\bf b}\times\bar{\bf c})$ direction drawn by ORTEP.

Fig. 1. Drawings of the crystal structure.

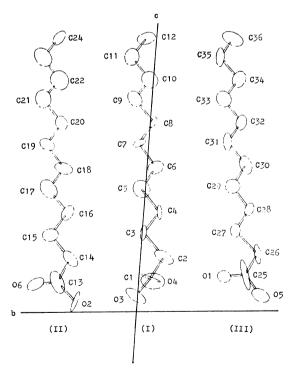


Fig. 2. Three molecules in an asymmetric unit. The atoms are drawn with ellipsoids of thermal vibration of 50% probability.

TABLE 3. STRUCTURAL PARAMETER

		TABLE 3. STRUCTURAL P	ARAMETER		
(a) Interatomic dista	ancesa) (Å)				
C1-C2	1.52	C13-C14	1.54	C 25-C 26	1.52
C2-C3	1.69	C14-C15	1.61	C26-C27	1.70
C3-C4	1.63	C15-C16	1.61	C27-C28	1.65
C4-C5	1.58	C16-C17	1.63	C28-C29	1.55
C5-C6	1.59	C17-C18	1.53	C 29-C 30	1.58
C6-C7	1.57	C18-C19	1.56	C30-C31	1.60
C7-C8	1.63	C19-C20	1.59	C31-C32	1.55
C8-C9	1.62	C20-C21	1.62	C32-C33	1.56
C9-C10	1.55	C21-C22	1.59	C33-C34	1.61
C10-C11	1.58	C22-C73	1.53	C34-C35	1.60
C11-C12	1.59	C23-C24	1.66	C35-C36	1.57
O3-C1	1.31	O2-C13	1.34	O5-C25	1.32
O4-C1	1.29	O6-C13	1.14	O1-C25	1.20
(b) Bond anglesb) (c	?)				
O3-C1-O4	117	O6-C13-O2	123	O1-C25-O5	121
C2-C1-O3	121	C14-C13-O2	110	C26-C25-O5	108
C3-C2-C1	101	C15-C14-C13	107	G27-G26-G25	101
C4-C3-C2	98	C16-C15-C14	101	C28-C27-C26	99
C5-C4-C3	100	C17-C16-C15	105	C29-C28-C27	106
C6-C5-C4	104	C18-C17-C16	106	C30-C29-C28	108
C7-C6-C5	109	C19-C18-C17	106	C31-C30-C29	107
C8-C7-C6	110	C20-C19-C18	109	C32-C31-C30	106
C9-C8-C7	106	C21-C20-C19	109	C33-C32-C31	106
C10-C9-C8	104	C22-C21-C20	104	G34-G33-G32	106
C11-C10-C9	105	C23-C22-C21	103	C35-C34-C33	102
C12-C11-C10	105	C 24-C 23-C 22	104	C36-C35-C34	104
(c) Internal rotation	angles (°)				
C3-C2-C1-O3	99 `´	C15-C14-C13-O2	-178	C27-C26-C25-O5	179
C4-C3-C2-C1	178	C16-C15-C14-C13	175	C28-C27-C26-C25	178
C5-C4-C3-C2	-179	C17-C16-C15-C14	178	C29-C28-C27-C26	-177
C6-C5-C4-C3	177	C18-C17-C16-C15	-180	C30-C29-C28-C27	175
C7-C6-C5-C4	177	C19-C18-C17-C16	-176	C31-C30-C29-C28	177
C8-C7-C6-C5	-178	C20-C19-C18-C17	-179	C32-C31-C30-C29	179
C9-C8-C7-C6	180	C21-C20-C19-C18	178	C33-C32-C31-C30	-178
C10-C9-C8-C7 C11-C10-C9-C8	177 180	C22-C21-C20-C19 C23-C22-C21-C20	179 176	C34-C33-C32-C31 C35-C34-C33-C32	177 - 180
C12-C11-C10-C9	180 178	G23-G22-G21-G20 G24-G23-G22-G21	-176 -179	C36-C35-C34-C33	-180 -175
312-311-310-33	-170	021-023-022-021	-173	G30-G33-G34-G33	1/3

a) The average of the values of the standard deviation is 0.14 Å. b) The average of the standard deviation is 7.

Table 4. Atomic displacements from the least-squares planes of hydrocarbon chains

The equation expressed in the orthogonal Cartesian system:

 $C25-C36 \quad 0.380X+0.843Y-0.380Z=-1.390$

C1	-0.06	C13	-0.09	C 25	-0.18
C2	0.02	C14	0.00	C26	-0.03
C3	0.01	C15	0.03	C 27	0.01
C4	0.06	C16	-0.02	C28	0.12
C5	0.01	C17	0.07	C29	0.07
C6	-0.03	C18	0.04	C30	0.03
C 7	0.00	C19	-0.01	C31	0.09
$\mathbf{C8}$	0.00	C20	0.00	C32	0.05
$\mathbf{G9}$	0.03	C21	0.03	C33	0.04
C10	-0.04	C22	0.04	C34	-0.10
C11	0.00	C23	-0.06	C35	-0.07
C12	-0.01	C24	-0.04	C 36	-0.05
O_3	1.00	O_2	-0.27	O5	-0.21
O4	-1.16	$\overline{O6}$	0.11	O1	-0.02

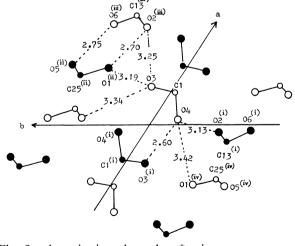


Fig. 3. A projection along the c*-axis. \bigcirc : Upper layer atoms, \bullet : lower layer atoms. Symmetry code (i) -x, -y, -z, (ii) -x+1, -y, -z, (iii) x+1, y, z, (iv) x-1, y, z.

to appear in a crystal of the simple fatty acid. The larger thermal parameters of the atoms in the carboxyl group, listed in Table 2, might be due to this unusual arrangement of molecules.

The arrangement of the end groups is shown in Fig. 3. As is commonly found in fatty acids, the molecules are bound together to form dimers through hydrogen bonds between the carboxyl groups. The hydrogen-bond lengths are 2.60 Å between O3–O4⁽ⁱ⁾, 2.70 Å between O2⁽ⁱⁱⁱ⁾–O1⁽ⁱⁱ⁾, and 2.75 Å between O6⁽ⁱⁱⁱ⁾–O5⁽ⁱⁱ⁾.

If Molecule (I) took the same conformation as (II), the O4–O2⁽¹⁾ distance would be 2.34 Å, too close to form a hydrogen bond between the molecules. This short contact is relieved by rotating the carboxyl group about the C1–C2 bond, resulting in a particular conformation of Molecule (I).

In the C-form of lauric acid, carboxyl groups appear in the same layer, but in the A-form, both the A-super form and the A_1 -form, they do not. In the A_1 -form the carboxyl group is adjacent to the methyl group of the neighboring molecule, and the short contact mentioned above is relieved.

The structure in which the carboxyl groups of the

same conformation appear in the same layer, as is seen in the C-form, might be unfavorable in the A-form of lauric acid.

We wish to thank Professor Y. Iitaka of The University of Tokyo for his encouragement and helpful discussions.

References

- 1) F. Francis and S. H. Piper, J. Am. Chem. Soc., 61, 577 (1939).
- 2) V. Vand, W. H. Morley, and T. R. Lomer, *Acta Crystallogr.*, **4**, 324 (1951).
 - 3) E. von Sydow, Acta Chem. Scand., 10, 1 (1956).
 - 4) T. R. Lomer, Acta Crystallogr., 16, 984 (1963).
- 5) T. Tsuchiya, Jitsuyo Yushi Kagaku Binran, Sangyo, Tosho, Tokyo (1946).
- 6) T. Ashida, HBLS (IV), The Universal Crystallographic Computing System (I), The Crystallographic Society of Japan (1967), p. 65.
- 7) C. K. Johnson, Oak Ridge National Laboratory Report ORNL-3794.
- 8) B. Dahién, B. M. Lundén, and I. Pascher, Acta Crystallogr., Sect. B, 32, 2059 (1976).